
Computers and Electronics in Agriculture 187 (2021) 106255

Available online 15 June 2021
0168-1699/© 2021 Elsevier B.V. All rights reserved.

Review 

Behaviour recognition of pigs and cattle: Journey from computer vision to 
deep learning 

Chen Chen a,b,*, Weixing Zhu a,*, Tomas Norton b,* 

a School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China 
b Division of Measure, Model & Manage Bioresponses (M3-Biores), KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium   

A R T I C L E  I N F O   

Keywords: 
Identification 
Livestock behaviour recognition 
Computer vision 
Deep learning 
Research trend 

A B S T R A C T   

The increasing demand for sustainable livestock products also demands new considerations in animal breeding. 
Breeding programs are now seeking to integrate animal behavioural phenotypes, as these relate to the pro-
ductivity, health and welfare of the animals and thereby can influence yield and economic benefits in the in-
dustry. Traditional manual observation of pig behaviour is time-consuming, laborious, subjective, and difficult to 
achieve in continuous and large-scale operations. It is not surprising that computer vision technology with the 
advantages of being objective, non-invasive and continuous has been widely researched for its use in the 
recognition of livestock behaviours over recent years. Nevertheless, in studies of livestock behaviour recognition, 
computer vision technology faces some challenges, e.g., complex scenes, variable illumination, occlusion, 
touching and overlapping between livestock, which has limited the fast translation of technology to industry. On 
the other hand, deep learning technology has proven to solve these difficulties to a certain extent and is being 
adopted to recognise livestock behaviours. This paper mainly evaluates the recent developments in computer 
vision methods for recognition of these behaviours in pigs and cattle. The focus on these species is made possible 
by the number of studies exist quantifying behaviours that are of importance for their health, welfare and 
productivity such as aggression, drinking, feeding, lameness, mounting, posture, tail-biting and nursing. This 
review paper especially analyses the development of image segmentation, identification and behaviour recog-
nition using tradition computer vision and more recent deep learning methods, and evaluates the evolution of 
key research in the field. We elaborate the research trend of livestock behaviour recognition from four aspects, i. 
e., development of robust livestock identification algorithms, recognition of livestock behaviours for different 
growth stages, further quantification of the results of behaviour recognition, and building evaluation system of 
growth status, health and welfare.   

1. Introduction 

With the increasing demand for sustainable animal products, live-
stock breeding and careful animal management have become an 
important means of improving production efficiency of the livestock 
industry (Norton et al., 2019). Livestock behaviours reflect the health, 
welfare and growth status of the pigs, thereby affecting the yield and 
economic benefits (Larsen et al., 2021). Individual animal behaviours 
are related to the amount of water and feed consumed, and are impor-
tant for understanding animal productivity (Botreau et al., 2007). The 
social behaviour of animals can give important insights into their 

welfare status, for example aggression between pigs can cause skin 
trauma, infection and even fatal injuries (Turner et al., 2006). Excessive 
mounting behaviours can cause a high risk of poor welfare, arising from 
skin lesions, lameness and stress, and economic losses from reduced 
performance (Teixeira and Boyle, 2014). Tail-biting is considered to be a 
welfare-reducing problem with economic consequences for pig pro-
duction (Larsen et al., 2019). Playing behaviour of pigs towards 
enrichment objects can reduce the occurrence of tail-biting, mounting 
and aggression and consequently improve animal welfare (Lahrmann 
et al., 2018). Nursing behavior, as one of behaviours of sows during 
lactation, is critical for early survival and growth of their piglets prior to 
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weaning (Muns et al., 2013), which has a great impact on the economic 
benefit of pig farms (Vila and Tummaruk, 2016). Furthermore, animal 
body-part movement can be used for disease detection, for example 
lameness has become a frequent and serious problem for herd produc-
tivity and animal welfare in the dairy industry (Bruijnis et al., 2012). 
Clinical lameness has a significant impact on milk yield (Ouared et al., 
2015) and reproductive performance (Morris et al., 2011). Cattle pose 
estimation is a key step analysing cattle behaviors and evaluating cattle 
health, thereby greatly significant for intelligent breeding of cattle 
(Yazdanbakhsh et al., 2017). Therefore, the monitoring and recognition 
of livestock behaviours are of great significance to the development of 
precision livestock farming. 

As the traditional method of manual observation of livestock be-
haviours is time-consuming, laborious, subjective, and difficult to ach-
ieve continuous and large-scale operations, in recent years computer 
vision technology that has the advantages of objective, non-invasive and 
continuous has been widely applied for recognition of livestock behav-
iours, e.g., aggression, drinking, feeding, lameness, mounting, posture, 
tail-biting, nursing, playing and other behaviours. Computer vision is a 
simulation of biological vision using computers and related equipment, 
and is an important part of the field of artificial intelligence. Its main 
task is to obtain the information of the corresponding scene by pro-
cessing the collected images or videos. A traditional computer vision 
system is mainly aimed at extracting features from images, and it also 
includes a series of other subtasks, e.g., edge detection, corner detection, 
image segmentation and pattern recognition. Traditional feature 
extraction algorithms include Scale Invariant Feature Transform (SIFT), 
Speeded Up Robust Features (SURF), and Binary Robust Independent 
Element Feature (BRIEF) (García et al., 2020). According to the type and 
quality of input images, different algorithms have different degrees of 
success. Ultimately, the accuracy of the entire system depends on the 
method of extracting features. The main challenge of this method is to 
tell the system which features to look for in the image. As the algorithm 
runs according to the designer’s definition and the extracted features are 
artificially designed, poor algorithm performance can be improved by 
fine-tuning in the implementation. However, such changes need to be 
done manually and hard-coded for specific applications, which pose a 
big obstacle to the realisation of high-quality computer vision. In the 
existing studies of livestock behaviour recognition, computer vision 
technology also faces other challenges, e.g., complex scenes, variable 
illumination, occlusion, touching and overlapping between livestock 
(Tu et al., 2020). 

Deep learning technology that can solve the above difficulties to a 
certain extent has been gradually used to recognise livestock behaviours. 
For instances, Yang et al. (2018a) used a fully convolutional network 
(FCN) to segment images of lactating sows with different scenes, vari-
able illumination, etc. Furthermore, Tian et al. (2019) used the modified 
Counting Convolutional Neural Network (CNN) model based on the 
architecture ResNeXt to count the number of pigs under the conditions 
of partial occlusion, overlapping and different perspectives. Therefore, 
development from computer vision to deep learning is necessary in the 
field of livestock behaviour recognition. Currently, deep learning sys-
tems have made significant progress in dealing with some related sub-
tasks. The biggest difference in deep learning is that it no longer uses 
carefully programmed algorithms to search for specific features, but 
instead trains the neural network in the deep learning system (Yang & 
Xiao, 2020). As the computing power provided by deep learning systems 
increases, the computer will be able to recognise and react to everything 
it sees, which has made significant progress. In recent years, the 
development of deep learning has not only break-through many difficult 
visual problems to improve the level of image cognition, but also 
accelerated the progress of related technologies in the field of computer 
vision. With the continuous improvement of deep learning models and 
computing power, autonomous systems can continue to develop steadily 
and truly realise the interpretation and response to what they perceive. 

Through the investigation of a large number of computer vision- 

based and deep learning-based pig and cattle behaviour recognition 
literature, this paper mainly evaluates the methods for recognition of 
these behaviours of pigs and cattle. Since image segmentation and 
identification are the basis of livestock behaviour recognition, this paper 
analyses the development process of image segmentation, identification 
and behaviour recognition from computer vision to deep learning, and 
provides researchers and producers with technical references. Further-
more, this paper elaborates the research trend of livestock behaviour 
recognition from four aspects, i.e., development of robust livestock 
identification algorithms, recognition of livestock behaviours for 
different growth stages, further quantification of the results of behaviour 
recognition, and building evaluation system of growth status, health and 
welfare. 

This paper is organised as follows: Section 2 reviews the studies of 
image segmentation of pigs and cattle from body entirety to body part. 
Section 3 reviews the studies of identification of pigs and cattle from 
body part to body entirety. Section 4 reviews the studies of behaviour 
recognition of pigs and cattle from computer vision to deep learning. 
Section 5 proposes the research trend of livestock behaviour recognition. 

2. Image segmentation 

The role of image segmentation is to extract foreground targets from 
the background, and the effect of image segmentation directly affects 
the accuracy of feature extraction and livestock behavior recognition 
(Hao et al., 2020). Table 1 illustrates the overview of image segmenta-
tion of pigs and cattle based on computer vision and deep learning. 

2.1. Body entirety segmentation 

Initially, the segmentation of pigs and cattle was focused on the body 
entirety. On the one hand, the body entirety segmentation mainly in-
volves single-pig segmentation. In order to segment the sow and its 
piglets in farrowing pens (Fig. 1(a)), Tu et al. (2013) updated the 
background modelling as the reference image by using texture integra-
tion and then performed subtraction between the current image and the 
current reference image obtained by a wavelet transform. Finally, the 
pairwise relationships between a pixel and its neighbours on a factor 
graph were modeled based on the pseudo-wavelet coefficients, and the 
image probabilities were approximated by using loopy belief propaga-
tion. This study showed how it is possible to extract foreground pigs in 
complex farrowing pen scenes, e.g., sudden light changes, dynamic 
background, and motionless foreground objects. In order to segment the 
single-sow in farrowing crates during day and night (Fig. 1(b)), Khor-
amshahi et al. (2014) defined a number of image local features based on 
small neighborhoods around a point and compared their separability 
and performance metrics. Finally, a feed-forward neural network (NN) 
was used to classify the pixels between the sow and background, and a 
realistic configuration in terms of an acceptable level of accuracy and 
computation time was chosen. This study demonstrated the possibility 
of foreground extraction when there is lack of information of the 
background. The above methods belong to computer vision. In order to 
further separate the single-sow from the pig herd in the loose pen (Fig. 1 
(c)), Yang et al. (2018a) segmented the sow by using a fully convolu-
tional network (FCN) and refined the coarse output of the FCN by using 
the probability map from the final layer of the FCN and Otsu’s thresh-
olding from the hue, saturation, and value colour information. This deep 
learning method improved segmentation results compared with Simul-
taneous Detection and Segmentation (SDS), Otsu, Mixture of Gaussians 
(MoG), and traditional FCNs. In the above studies, it can be seen that 
single-sow entirety segmentation has evolved from computer vision to 
deep learning. 

On the other hand, the body entirety segmentation mainly involves 
multi-pig/cattle segmentation. In order to extract pigs in group-housed 
environments (Fig. 1(d)), Guo et al. (2014) detected the foreground pigs 
by using Prediction Mechanism-based Mixture of Gaussians (PM-MoG) 
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and used the maximum entropy segmentation according to the colour 
information of foreground objects. Finally, the results of the two pre-
vious steps of foreground detection were fused. This method can extract 
relatively complete foreground pigs in complex scenes, e.g., light 
changes, the influence of ground urine stains, water stains, manure and 
other sundries, pigs’ slow movement patterns, and varying colours of 
pigs. In order to further extract pigs in a drinker and feeder zone (Fig. 1 
(e)), Guo et al. (2015) segmented pigs with a maximum entropy global 
threshold from the image enhanced by histogram equalization. Then, 
each object centroid was calculated from the initially segmented objects, 
and the original image was adaptively divided into multiple circular sub- 
blocks whose origin was the centroid and radius was the maximum 
distance from the centroid to the edge point. Finally, an accurate sec-
ondary segmentation result was obtained using multilevel thresholding 
segmentation in each sub-block. However, the above two methods will 
be useless when the pigs are touching each other. In order to separate 
these touching pigs, Lu et al. (2016) developed a segmentation algo-
rithm for touching pig images based on ellipse fitting method (Fig. 1(f)). 
First, ellipse fitting was used for a large number of images which have 
one pig. Parameters range of ellipses fitted by images with a single piglet 
on different age was extracted. Secondly, contours of connected com-
ponents in a touching pigs’ image were extracted. Each contour was 
segmented based on concave points. Ellipse fitting was implemented for 
each contour segment. Finally, 5 rules for ellipse merging were pro-
posed, which were used to merge anomalous ellipses. After ellipse 
merging, the number of ellipses was equal to the number of pigs. 
However, this algorithm’s accuracy may be reduced when the number of 
pigs is more than 7. In order to further separate touching pigs, Li et al. 
(2019a) developed a pig detection approach based on multi-feature 
template matching (Fig. 1(g)). First, two complementary descriptors, i. 
e., dominant orientation templates (DOTs) and brightness ratio tem-
plates (BRTs), were combined to represent images. A DOT established 
relationships with edge features, while a BRT encoded intensity and 
texture features. Both descriptors were given in binary form to increase 
the time efficiency of the algorithm. Then, representative pig templates 
can be obtained from training images through an automatic selection 
process based on template clustering. Finally, the input image was 
scanned to compute matching responses for all templates. Thus, objects 
having similar visual properties as the given templates were considered 
as detected pigs. This study can effectively and reliably extract pigs in 
complex scenes including multiple sources of disturbances, e.g., uneven 
illumination, foreground objects of varying colour, pigs moving slowly, 
etc. The above methods of multi-pig segmentation belong to computer 
vision. As the deep learning method can segment pigs with good per-
formance in the conditions of pigs’ touching, overlapping and occlusion, 
different perspectives, etc., many studies of the body entirety segmen-
tation of multi-pig/cattle based on deep learning have appeared. 

Brünger et al. (2018) introduced a method for adapting the ellipses of 
pigs, which is not based on the edges of the segmentation but looks at all 
segmented pixels (Fig. 1(h)). This makes it easier to compensate minor 
errors in segmentation and helps to process images even under sub- 
optimal conditions, such as poor lighting or unfavourable camera posi-
tioning. Zhang et al. (2019a) segment pigs by using the Single Shot 
Multibox Detector (SSD) architecture with a modified loss function as 
the detector and compared the Faster Region-based Convolutional 
Neural Network (Faster R-CNN), Region-based Fully Convolutional 
Network (R-FCN) and SSD for pig detection (Fig. 1(i)). This study can 
detect pigs in conditions of light fluctuation, similar appearances of pigs, 
shape deformations, and occlusions and can track pigs under both 
daylight and infrared (nighttime) light conditions. Tu et al. (2020) 
developed a segmentation approach based on Mask Scoring R-CNN 
framework to solve pig segmentation from front-view and top-view 
(Fig. 1(j)). First, a CNN-based feature extraction, which used backbone 
architecture with residual network of depth 101 layers (ResNet-101) and 
feature pyramid network (FPN) that can extract features from low-level 
and high-level of the feature pyramid according to different scales. Then, 
the candidate regions of interest (RoIs) were generated by region pro-
posal network (RPN) based on the features derived from backbone ar-
chitecture. Finally, the pig for each RoI was detected and segmented. 
This approach can robustly detect and segment multiple pigs under the 
group-housed pig natural scenes, e.g., uneven illumination, pigs’ oc-
clusion and overlapping. For body entirety segmentation of multi-cattle, 
Qiao et al. (2019a) developed a segmentation approach based on a Mask 
R-CNN deep learning framework to solve problems of cattle segmenta-
tion and contour extraction in real feedlot environment (Fig. 1(k)). This 
approach consisted of 4 steps, i.e., key frame extraction used for 
detecting the huge cattle motion frames, image enhancement used for 
reducing the illumination and shadow influence, cattle segmentation, 
and body contour extraction. This study can render fairly desirable cattle 
segmentation performance with 0.92 Mean Pixel Accuracy (MPA) and 
achieve contour extraction with an Average Distance Error (ADE) of 
33.56 pixels, which was better than that of the state-of-the-art Sharp-
Mask and DeepMask segmentation methods. Xu et al. (2020) applied the 
cutting-edge instance segmentation framework of Mask R-CNN to 
segment quadcopter acquired cattle images and to count cattle in 
different situations such as extensive production pastures and also in 
intensive housing such as feedlots (Fig. 1(l)). The optimal IoU threshold 
and the full-appearance detection for the algorithm in this study were 
verified through performance evaluation. This study showed the 
framework’s potential to perform reliably in offline quadcopter vision 
systems in counting cattle on pastures and in feedlots. Compared with 
the existing typical competing algorithms, Mask R-CNN outperformed 
both in the counting accuracy and average precision especially on the 
datasets with occlusion and overlapping. In the above studies, it can be 

Table 1 
Overview of image segmentation of pigs and cattle based on computer vision and deep learning.  

Year Persons Species Research contents Perspectives/Cameras Technologies 

2013 Tu et al. pig Body entirety segmentation Top-view/2D Computer vision 
2014 Khoramshahi et al. pig Body entirety segmentation Top-view/2D Computer vision 
2014 Guo et al. pig Body entirety segmentation Top-view/2D Computer vision 
2015 Guo et al. pig Body entirety segmentation Top-view/2D Computer vision 
2016 Lu et al. pig Body entirety segmentation Top-view/2D Computer vision 
2018 Brünger et al. pig Body entirety segmentation Top-view/2D Computer vision 
2019a Li et al. pig Body entirety segmentation Top-view/2D Computer vision 
2018a Yang et al. pig Body entirety segmentation Top-view/2D Deep learning 
2019a Zhang et al. pig Body entirety segmentation Top-view/2D Deep learning 
2020 Tu et al. pig Body entirety segmentation Top&side-view/2D Deep learning 
2019a Qiao et al. Cattle Body entirety segmentation Top&side-view/2D Deep learning 
2020 Xu et al. Cattle Body entirety segmentation Top&side-view2D Deep learning 
2021 Jia et al. Cattle Body part segmentation Side&back-view/3D Computer vision 
2019 Psota et al. pig Body part segmentation Top-view/2D Deep learning 
2019 Jiang et al. Cattle Body part segmentation Side-view/2D Deep learning 
2020a Liu et al. Cattle Body part segmentation Side-view/2D Deep learning  
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Fig. 1. Image segmentation for pigs and cattle based on computer vision and deep learning.  
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seen that multi-pig/cattle entirety segmentation has also developed 
from computer vision to deep learning. 

2.2. Body part segmentation 

Subsequently, the segmentation of pigs and cattle was focused on the 
body parts, which can provide detailed information for behaviour 
recognition. Jia et al. (2021) presented a computer vision method that 
automatically segments nine cow’s body parts, i.e. head, torso, udder, 
belly (or rear), left foreleg, right foreleg, left hindleg, right hindleg and 
tail, by using an improved version of template matching (Fig. 1(m)). The 
results indicate that it is possible to automatically detect and extract 
body parts from RGB-depth images without any manual interference. 
Psota et al. (2019) developed an algorithm for instance-level detection 
of multiple pigs in group-housed environments (Fig. 1(n)). This method 
used a single fully-convolutional neural network to detect the location of 
left ear, right ear, shoulder and tail and the orientation of each pig, 
where both body part locations and pairwise associations were repre-
sented in the image space. In order to overcome the difficulty that 
traditional object detection algorithms cannot detect the key parts of 
dairy cows with high precision, Jiang et al. (2019) tested a deep learning 
network named FLYOLOv3 based on FilterLayer (FilterLayer YOLOv3) 
to detect dairy cows’ key parts (i.e., head, trunk and legs) in complex 
scenes (Fig. 1(o)). As images were unstable during the training process 
and initialisation, particle noise was generated in feature maps after 
convolution. Therefore, the mean filtering algorithm was carried out, 
and a leaky rectifier function (Leaky ReLU) was used to integrate the 
custom FilterLayer layer to reduce training interference. The artificial 
annotation was used firstly to mark the borders of the cow’s head, trunk 
and legs in images, and then the FLYOLOv3 network was trained with 
the labelled samples. Finally, the trained model was used to test the 
images. This method was compared with the Faster R-CNN and YOLOv3 
algorithm by using indicators, e.g., accuracy, recall rate, average frame 
rate, and average accuracy. Liu et al. (2020a) designed a side-view cow 
structural model to describe the spatial positions of the joints (key-
points) of the cow and developed a system using deep learning to 
automatically extract the structural model from videos (Fig. 1(p)). This 
system can detect multiple cows in the same frame and provides robust 
performance for the body region under practical challenges like obsta-
cles (fences) and poor illumination. In the above studies, it can be seen 
that multi-pig/cattle part segmentation mainly adopts deep learning 
technologies. 

3. Identification 

The role of identification is to determine the identity of each indi-
vidual in the group, and this identity can locate the recognised behav-
iour on a specific animal, thereby realising the transformation from 
group behaviour recognition to individual behaviour recognition (Pra-
shanth & Sudarshan, 2020). Table 2 illustrates the overview of identi-
fication of pigs and cattle based on computer vision and deep learning. 

3.1. Pig identification from body part to entirety 

Pig identification from body part to entirety has developed from 
computer vision to deep learning. Ahrendt et al. (2011) developed a 
real-time computer vision system for identification and tracking of pigs 
in loose-housed stables (Fig. 2(a)). The tracking algorithm operates in 2 
steps. The first step built up support maps, pointing to preliminary pig 
segments in each video frame. In the second step the support map seg-
ments were used to build up a 5D-Gaussian model of the individual pigs 
(i.e. position and shape). The system has software correction for fisheye 
distortion coming from the camera lens. The fisheye lens allows the 
camera to monitor a much larger area in the stable. The system can track 
at least 3 pigs more than 8 min without losing track and identity of the 
individual pigs in a realistic experiment. However, this study requires 

the manual marking on the region of pig back. In order to realise the pig 
identification without manual marking, Hansen et al. (2018) captured 
the pig face images in a farm environment and trained a CNN model 
using an artificially augmented data set (Fig. 2(b)). Class Activation 
Mapping using Grad-CAM was used to show the regions that the network 
used to discriminate between pigs. This study further compared the 
proposed CNN model with the Fisherfaces and the VGG-Face pre-trained 
face CNN model, which are techniques adopted in human face recog-
nition. Marsot et al. (2020) further detected pig faces and eyes by two 
Haar feature-based cascade classifiers and one shallow convolutional 
neural network to extra high-quality images (Fig. 2(c)). Face recognition 
was performed by using a deep convolutional neural network, and class 
activation maps generated by grad-CAM and saliency maps were utilised 
to visually understand how the discriminating parameters have been 
learned by the neural network. The outcome of this study will facilitate 
the real-application of AI-based animal identification in swine produc-
tion. However, these pig face-based identification methods require that 

Table 2 
Overview of identification of pigs and cattle based on computer vision and deep 
learning.  

Year Persons Species Research 
contents 

Perspectives/ 
Cameras 

Technologies 

2011 Ahrendt 
et al. 

pig Body part- 
based 
identification 

Top-view/2D Computer 
vision 

2018 Hansen 
et al. 

pig Body part- 
based 
identification 

Top&side- 
view/2D 

Deep 
learning 

2020 Marsot 
et al. 

pig Body part- 
based 
identification 

Top&side- 
view/2D 

Deep 
learning 

2017 Zhu 
et al. 

pig Body entirety- 
based 
identification 

Top-view/2D Computer 
vision 

2017 Huang 
et al. 

pig Body entirety- 
based 
identification 

Top-view/2D Computer 
vision 

2020 Huang 
et al. 

pig Body entirety- 
based 
identification 

Top-view/2D Computer 
vision 

2018b Yang 
et al. 

pig Body entirety- 
based 
identification 

Top-view/2D Deep 
learning 

2008 Allen 
et al. 

Cattle Body part- 
based 
identification 

Top&side- 
view/2D 

Computer 
vision 

2014 Lu et al. Cattle Body part- 
based 
identification 

Top&side- 
view/2D 

Computer 
vision 

2016 Gaber 
et al. 

Cattle Body part- 
based 
identification 

Top&side- 
view/2D 

Computer 
vision 

2017 Li et al. Cattle Body part- 
based 
identification 

Top-view/2D Computer 
vision 

2018 Kumar 
et al. 

Cattle Body part- 
based 
identification 

Top&side- 
view/2D 

Deep 
learning 

2019 Zhao 
et al. 

Cattle Body part- 
based 
identification 

Side-view/2D Computer 
vision 

2019 Sun et al. Cattle Body part- 
based 
identification 

Top-view/2D Deep 
learning 

2020 Hu et al. Cattle Body part- 
based 
identification 

Top&side- 
view/2D 

Deep 
learning 

2019 Okura 
et al. 

Cattle Body entirety- 
based 
identification 

Top&side- 
view/2D/3D 

Computer 
vision 

2019b Qiao 
et al. 

Cattle Body entirety- 
based 
identification 

Top&side- 
view/2D 

Deep 
learning  
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Fig. 2. Identification for pigs and cattle based on computer vision and deep learning.  
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pigs enter the designated area cooperatively in order to obtain images of 
pig faces, which may involve human intervention. 

In order to realise pig identification without human intervention, the 
region on pigs used for identification has moved from the body part to 
the body entirety. Zhu et al. (2017) extracted the colour moments, area, 
perimeter and other features of the drinking pig and identified indi-
vidual pigs by computing the Euclidean distance between the pig and 
the standard sample. Huang et al. (2018) extracted Gabor features by 
convolving pig images with Gabor filters and the local structural fea-
tures by using the Local Binary Pattern (LBP) (Fig. 2(d)). Principal 
Components Analysis (PCA) was then used to reduce the feature 
dimension and the features were concatenated to form the feature vec-
tors. Finally, Support Vector Machine (SVM) was used to classify these 
feature vectors to identify standing pigs. Huang et al. (2020) proposed a 
Weber texture local descriptor (WTLD) for the identification of pigs by 
extracting the local features of back hair, skin texture and spots (Fig. 2 
(e)). By calculating the differential excitation and multi-directional in-
formation of pixels, the local structure features of the main direction 
were fused to enhance the description ability of features. The results 
show that the WTLD achieves higher recognition rates with a lower 
feature dimension. This method can identify pig individuals with 
different positions and postures in the pigsty. However, the above 
computer vision methods for identification of pigs are mainly suitable 
for loose pens. In order to further identify touching pigs, Yang et al. 
(2018b) used Faster R-CNN to locate and identify individual pigs from a 
group-housed pen (Fig. 2(f)). The head of each pig was also located. An 
algorithm for associating the head of each pig with its body was 
designed. In the above studies, it can be seen that pig identification 
based on either body part or entirety has developed from computer 
vision to deep learning. 

3.2. Cattle identification from body part to entirety 

Cattle identification from body part to entirety has also developed 
from computer vision to deep learning. In order to identify the cattle 
based on body part, Allen et al. (2008) recorded the unique retinal 
vascular pattern (RVP) at the back of a cattle’s eye and matched the RVP 
with the same eye of the same animal by the Optibrand Matching Engine 
(Fig. 2(g)). Lu et al. (2014) developed a cow identification system based 
on iris analysis, which includes iris imaging, iris detection, and recog-
nition (Fig. 2(h)). First, the image quality of the captured sequences was 
assessed and a clear iris image was selected for subsequent process. 
Second, the inner and outer boundaries of cow iris were fitted respec-
tively as two ellipses based on the edge images during segmentation. 
Then the segmented cow iris was obtained and normalised by using 
geometric method. Finally, 2D complex wavelet transform (2D-CWT) 
was used to extract local and global characteristics of the cow iris and 
the phase of the filtered cow iris was encoded as features for matching 
the identity of the cow. Gaber et al. (2016) used the Weber Local 
Descriptor (WLD) to extract robust features from cattle muzzle print 
images (Fig. 2(i)). Then the AdaBoost classifier was used to identify head 
of cattle from their WLD features. This WLD along with AdaBoost al-
gorithm gave promising results compared to both of the k-Nearest 
Neighbor (k-NN) and Fuzzy-k-Nearest Neighbor (Fk-NN) algorithms. In 
the above studies, body part used for identification was mainly focused 
on the cattle’s retinal, eye or nose. This requires these body parts being 
in constrained environments. In order to identify the cattle in uncon-
strained environments, Li et al. (2017) used the tailhead image as a 
Region of Interest (ROI) and then used Zernike moments as descriptors 
of shape characteristics for the white pattern on the ROI (Fig. 2(j)). Two 
groups of Zernike moments were extracted from the preprocessed image 
and classified using four alternative classifiers, namely, linear discrim-
inant analysis (LDA), quadratic discriminant analysis (QDA), artificial 
neural network (ANN) and SVM. These results show that the low-order 
Zernike moment feature, along with the QDA and SVM algorithms is an 
effective approach for individual dairy cow identification and has 

significant applications in precision animal management. Zhao et al. 
(2019) developed a computer vision system to extract body images and 
identify Holstein cows in the side-view videos of dairy cattle walking in a 
straight line (Fig. 2(k)). Cow mask was detected using adaptive SOM 
method. The largest inscribed rectangle was extracted to locate the 
cow’s body area. Feature points of the body image were extracted and 
matched with the template dataset to identify unknown cows. Four 
feature extraction methods and two matching methods were investi-
gated and evaluated. The results showed that the highest identification 
accuracy generated when the Features from Accelerated Segment Test 
(FAST), Scale Invariant Feature Transformation (SIFT) and FLANN 
methods were used for feature extraction, descriptor and matching. 
However, the combination of Oriented FAST and Rotated BRIEF (ORB) 
and BruteForce had better computational efficiency on the basis of high 
accuracy. The above studies belong to computer vision methods for 
cattle identification based on body part. On the other hand, deep 
learning has also been used for cattle identification based on body part. 
Kumar et al. (2018) developed a deep learning-based approach for 
identification of individual cattle based on their muzzle point image 
pattern (Fig. 2(l)). The deep learning-based Convolutional Neural 
Network (CNN) and Deep Belief Network (DBN) approaches were used 
to extract the salient set of texture features and represent muzzle point 
image of cattle. Stacked Denoising Auto-encoders (SDAE) was used to 
encode the extracted feature of muzzle point images. This deep learning 
approach outperforms state-of-the-art methods for identification of 
cattle on muzzle point image database. Sun et al. (2019) developed an 
automatic system for identifying individual cattle and assessing body 
condition score (BCS) using a deep learning framework (Fig. 2(m)). This 
work developed a linear regression model of BCS using ultrasound 
backfat thickness to determine BCS for training sets and tested a system 
based on convolutional neural networks with 3 channels, including 
depth, gray, and phase congruency. Hu et al. (2020) developed a cow 
identification method based on fusion of deep parts features (Fig. 2(n)). 
First, a set of side-view images of cows were captured, and then the 
YOLO object detection model was applied to locate the cow object in 
each original image, which was then divided into three parts, i.e., head, 
trunk and legs, by a part segmentation algorithm using frame differ-
encing and segmentation span analysis. Then, three independent con-
volutional neural networks (CNNs) were trained to extract deep features 
from these three parts, and a feature fusion strategy was designed to fuse 
the features, i.e., deep parts feature fusion. Finally, a support vector 
machine (SVM) classifier trained by the fused features was used to 
identify each individual cow. In the above studies, it can be seen that the 
body part-based cattle identification has developed form computer 
vision to deep learning. 

Furthermore, studies of the cattle identification based on body en-
tirety have appeared. Okura et al. (2019) developed a method for cow 
identification based on three-dimensional video analysis using RGB-D 
cameras, which capture images with RGB colour information and sub-
ject distance from the camera. Using RGB-D videos of walking cows, a 
unified approach using two complementary features for identification, 
gait (i.e., walking style) and texture (i.e., markings), was developed 
(Fig. 2(o)). Qiao et al. (2019b) developed a deep learning based 
framework to identify beef cattle using image sequences unifying the 
advantages of both CNN (Convolutional Neural Network) and LSTM 
(Long Short-Term Memory) network methods (Fig. 2(p)). A CNN 
network (i.e., InceptionV3) was used to extract features from a rear-view 
cattle video dataset and these extracted features were then used to train 
an LSTM model to capture temporal information and identify each in-
dividual animal. In the above studies, it can be seen that the body 
entirety-based cattle identification has also developed form computer 
vision to deep learning. 

4. Behaviour recognition 

Table 3 illustrates the overview of behaviour recognition of pigs and 
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cattle based on computer vision and deep learning. 

4.1. Aggressive behaviour recognition 

Initially, Viazzi et al. (2014a) used the Motion History Image (MHI) 
to extract the number of moving pixels of the pig herd as the mean in-
tensity of motion and extract the ratio of the moving pixels to the herd’s 
pixels as the occupation index (Fig. 3(a)). Based on these two features, 
the Linear Discriminant Analysis (LDA) was used to recognise aggressive 
behaviour of pigs. Oczak et al. (2014) extracted the activity index of the 
pig herd and calculated the average, maximum, minimum, sum and 
variance of activity index as features. A multilayer feed forward neural 
network was trained and validated to classify events of high aggression 
and medium aggression. Lee et al. (2016) used a Kinect depth sensor to 

extract the minimum, maximum, average, standard deviation of veloc-
ity, and distance between the standing pigs as feature vectors (Fig. 3(b)). 
A two binary-classifier SVM in a hierarchical manner was used to clas-
sify these feature vectors to recognise pig aggression. However, the pig 
herd or the standing pigs include the moving but non-aggressive pigs, 
and thus the features extracted from these pigs will influence the ac-
curacy of aggression recognition. In order to further separate the pair-
wise aggressive pigs form the pig herd, Chen et al. (2017) tracked 2 
aggressive pigs by using connected area and adhesion index according to 
their characteristics of continuous and large-proportion adhesion in the 
aggression process and then considered these 2 pigs as an entire rect-
angle to extract the acceleration feature of this rectangle (Fig. 3(c)). 
Based on this feature, rules for aggression recognition were designed to 
recognise medium and high aggression. In order to further extract actual 

Table 3 
Overview of behaviour recognition of pigs and cattle based on computer vision and deep learning.  

Year Persons Species Research contents Perspectives/Cameras Technologies 

2014a Viazzi et al. pig Aggression recognition Top-view/2D Computer vision 
2014 Oczak et al. pig Aggression recognition Top-view/2D Computer vision 
2016 Lee et al. pig Aggression recognition Top-view/3D Computer vision 
2017 Chen et al. pig Aggression recognition Top-view/2D Computer vision 
2018 Chen et al. pig Aggression recognition Top-view/2D Computer vision 
2019 Chen et al. pig Aggression recognition Top-view/3D Computer vision 
2020a Chen et al. pig Aggression recognition Top-view/2D Deep learning 
2013 Kashiha et al. pig Drinking recognition Top-view/2D Computer vision 
2016 Lao et al. pig Drinking recognition Top-view/3D Computer vision 
2017 Zhu et al. pig Drinking recognition Top-view/2D Computer vision 
2019 Leonard et al. pig Drinking recognition Top-view/3D Computer vision 
2019b Zhang et al. pig Drinking recognition Top-view/2D Deep learning 
2020 Yang et al. pig Drinking recognition Top-view/2D Deep learning 
2020b Chen et al. pig Drinking recognition Top-view/2D Deep learning 
2016 Lao et al. pig Feeding recognition Top-view/3D Computer vision 
2018b Yang et al. pig Feeding recognition Top-view/2D Deep learning 
2019 Leonard et al. pig Feeding recognition Top-view/3D Computer vision 
2020 Yang et al. pig Feeding recognition Top-view/2D Deep learning 
2020 Alameer et al. pig Feeding recognition Top-view/2D Deep learning 
2020c Chen et al. pig Feeding recognition Top-view/2D Deep learning 
2015 Porto et al. Cattle Feeding recognition Top-view/2D Computer vision 
2020 Achour et al. Cattle Feeding recognition Top-view/2D Deep learning 
2020 Bezen et al. Cattle Feeding recognition Top-view/3D Deep learning 
2008 Song et al. Cattle Lameness recognition Side-view/2D Computer vision 
2010 Poursaberi et al. Cattle Lameness recognition Side-view/2D Computer vision 
2013 Viazzi et al. Cattle Lameness recognition Side view/2D Computer vision 
2014b Viazzi et al. Cattle Lameness recognition Top&side-view/2D/3D Computer vision 
2014 Hertem et al. Cattle Lameness recognition Top-view/3D Computer vision 
2018 Zhao et al. Cattle Lameness recognition Side -view/2D Computer vision 
2020 Wu et al. Cattle Lameness recognition Side -view/2D Deep learning 
2020 Jiang et al. Cattle Lameness recognition Side -view/2D Deep learning 
2016 Nasirahmadi et al. pig Mounting recognition Top-view/2D Computer vision 
2019 Guo et al. Cattle Mounting recognition Top&side-view/2D Computer vision 
2019b Zhang et al. Pig Mounting recognition Top-view/2D Deep learning 
2019b Li et al. Pig Mounting recognition Top-view/2D Deep learning 
2013 Porto Cattle Behaviour posture recognition Top-view/2D Computer vision 
2015 Nasirahmadi et al. pig Behaviour posture recognition Top-view/2D Computer vision 
2019a Nasirahmadi et al. pig Behaviour posture recognition Top-view/2D Computer vision 
2018 Zheng et al. pig Behaviour posture recognition Top-view/3D Deep learning 
2019b Nasirahmadi et al. pig Behaviour posture recognition Top-view/2D Deep learning 
2019c Li et al. Cattle Behaviour posture recognition Side -view/2D Deep learning 
2020 Riekert et al. pig Behaviour posture recognition Top&side-view/2D Deep learning 
2020 Zhu et al. pig Behaviour posture recognition Top-view/3D Deep learning 
2020 Zheng et al. pig Behaviour posture recognition Top-view/3D Deep learning 
2020b Liu et al. pig Tail-biting recognition Top-view/2D Deep learning 
2018c Yang et al. pig Nursing recognition Top-view/2D Deep learning 
2019 Yang et al. pig Nursing recognition Top-view/2D Deep learning 
2020 Yang et al. pig Nursing recognition Top-view/2D Deep learning 
2020d Chen et al. Pig Playing recognition Top-view/2D Deep learning 
2016 Lao et al. pig Multi-behaviour recognition Top-view/3D Computer vision 
2019 Leonard et al. pig Multi-behaviour recognition Top-view/3D Computer vision 
2019b Zhang et al. Pig Multi-behaviour recognition Top-view/2D Deep learning 
2020 Yang et al. pig Multi-behaviour recognition Top-view/2D Deep learning 
2020 Zhang et al. pig Multi-behaviour recognition Top&side-view/2D Deep learning 
2020 Li et al. pig Multi-behaviour recognition Top&side-view/2D Deep learning 
2020 Fuentes et al. Cattle Multi-behaviour recognition Top&side-view/3D Deep learning 
2020 Yin et al. Cattle Multi-behaviour recognition Top&side-view/2D Deep learning  
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motion features on pig body from the aforementioned rectangle, Chen 
et al. (2018) located 5 feature points on the pig contour and calculated 
kinetic energy difference as features by motion analysis of these 2 
aggressive pigs (Fig. 3(d)). Hierarchical clustering was used to classify 
these features to obtain the thresholds of high and medium aggression. 
Based on these thresholds, rules for aggression recognition were 
designed to recognise medium and high aggression in each minimum 
recognition unit (MRU). In order to reduce the computation amount of 
the algorithm by setting frame-to-frame distance, Chen et al. (2019) set 
frame-to-frame distance and used frame difference method to obtain 
moving pixels. Then, the moving pixels caused by non-aggressive 
behaviour were removed by setting threshold of connected area 
(Fig. 3(e)). The number of filtered moving pixels were summed and 
defined as motion shape index (MSI) in each frame. After dividing all 
videos into 3 s-units, the maximum, mean, variance and standard de-
viation of MSI in each unit were extracted as features. Finally, support 
vector machine (SVM) was used to classify these features to recognise 
aggression. 

The above studies were focused on extraction of spatial features of 

pigs in each frame. In order to directly use spatial–temporal features in 
each episode to recognise aggression, Chen et al. (2020a) developed a 
deep learning method based on convolutional neural network (CNN) 
and long short-term memory (LSTM) to recognise aggressive episodes of 
pigs (Fig. 3(f)). First, the CNN architecture VGG16 was used to extract 
spatial features. These features were then input into LSTM framework to 
extract spatial–temporal features. Through fully connected layer, the 
prediction function Softmax was finally used to determine if the current 
episode is aggression or non-aggression. This study further improved the 
accuracy of aggression recognition by changing the episode length and 
the frame rate. In the above studies, it can be seen that recognition of 
aggressive behaviour of pigs has developed form computer vision to 
deep learning. 

4.2. Drinking behaviour recognition 

Studies of drinking recognition for pigs have mainly involved with 
single-pig drinking recognition and multi-pig drinking recognition. In 
order to recognise drinking of single-pig in a farrowing crate, Lao et al. 

Fig. 3. Aggressive behaviour recognition based on computer vision and deep learning.  

C. Chen et al.                                                                                                                                                                                                                                    



Computers and Electronics in Agriculture 187 (2021) 106255

10

(2016) located the sow head in the depth image and then recognised the 
sow’s drinking during standing and sitting postures based on the dis-
tance between the head and drinker (Fig. 4(a)). Leonard et al. (2019) 
also studied this type of situation and developed a method to detect the 
presence of a sow’s nose near the drinker. They first quantified the pixel 
number in a defined region close to the drinker and a drinking event was 
classified when the number of “nose” pixels in this region was greater 
than a threshold. In both of these cases, the drinking behaviour was 
detected by a simple position relationship between pig nose and drinker 
when the pig was in a space-limited environment around the drinker 
(Fig. 4(b)). In order to further recognise drinking of single-pig in an 
unlimited space, Yang et al. (2020) firstly differentiated the sow from 
the herd including the sow and its piglets and then extracted as spatial 
features the distance from the snout to the drinking nipple and head 
circularity for distinguishing head-up/head-down using a Fully Con-
volutional Network (FCN). They further defined the motion intensity of 
the head as temporal features using optical flow vectors and combined 
spatial and temporal features in the final recognition algorithm (Fig. 4 
(c)). From the above studies, it can be found that single-pig drinking 
recognition has developed from computer vision to deep learning. 

In order to realise multi-pig drinking recognition, Kashiha et al. 
(2013) located the pig’s nose relative to its body using the distance 
between the centroid and contour of the pig’s body. When the distance 
between nose and drinker was less than 10 pixels and the duration of the 
visit to the drinker was more than 2 s, the pig was classified as drinking 
and the water consumption was estimated (Fig. 4(d)). Zhu et al. (2017) 
extracted the color moment, area and perimeter of the pig in the 
drinking region as the feature vectors and then calculated Euclidean 
distance between these vectors and a standard drinking template. This 
distance and the duration were used to recognise the pigs’ presence and 

to classify whether drinking had occurred or not (Fig. 4(e)). Zhang et al. 
(2019b) proposed a sow behaviour detection algorithm based on deep 
learning (SBDA-DL) by using the MobileNet classification network with 
a depth separable convolution operation. The algorithm was trained 
based on data from four sows to detect their drinking, urination and 
mounting behaviours (Fig. 4(f)). In the above studies, multi-pig drinking 
recognition mainly involves spatial features. However, drinking and 
drinker-playing can not be easily distinguished only by using spatial 
features extracted from image frames, as the distances from the snout to 
the drinker are all close in the process of drinking or drinker-playing. In 
order to further classify the drinking and drinker-playing of pigs in video 
episodes, Chen et al. (2020b) extracted spatial–temporal features by 
using the CNN architecture ResNet50 and LSTM to determine if the 
current episode is drinking or drinker-playing (Fig. 4(g)). In this study, 
shortening the drinking region of interest from body region to head 
region can improve the classification accuracy. From the above studies, 
it can be found that multi-pig drinking recognition has also developed 
from computer vision to deep learning. 

4.3. Feeding behaviour recognition 

The current literature on recognition of pig feeding behaviour has 
indicates that research has largely been focused on sows either at an 
individual or group level. For individual sows, Lao et al. (2016) devel-
oped a method to detect feeding behaviour with a depth sensor. This 
algorithm first obtained the coordinates of the body parts and feeder, 
and when the height of the head was found to be lower than that of the 
feeder and the distance between head and shoulder smaller than that of 
the standing sow, the sow was recognised as feeding (Fig. 5(a)). Leonard 
et al. (2019) developed a different depth sensor-based image processing 

Fig. 4. Drinking behaviour recognition based on computer vision and deep learning.  
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method to determine a feeding sow based on the area of the sow’s head 
captured within a pre-determined region around the feeder. In both of 
the above studies the sows were constrained in farrowing stalls, where 
the spatial relationship between the head and feeder is small enough to 
allow for recognition of feeding by a single sow (Fig. 5(b)). As the 
behaviour of loose sows in groups will not likely be restricted by space, 
the recognition accuracy of the above methods may be reduced. To 
overcome this, Yang et al. (2020) firstly differentiated the sow from the 
herd including the sow and its piglets and then extracted as spatial 
features the circularity of the head and overlapping area of the head and 
feeding region using a Fully Convolutional Network (FCN). They further 
defined the motion intensity of the head as temporal features using 
optical flow vectors and combined spatial and temporal features in the 
final detection algorithm (Fig. 5(c)). 

For feeding recognition of multiple pigs, Yang et al. (2018b) used a 
Faster Region-Convolutional Neural Network (Faster R-CNN) to recog-
nise the identity of 4 sows and extracted an occupation index (i.e. ratio 
of the head to feeding region) as spatial features to recognise feeding 
behaviour of each pig (Fig. 5(d)). Alameer et al. (2020) developed a 

GoogLeNet-based deep learning method for feeding detection that does 
not rely on pig tracking and is capable of distinguishing between feeding 
and non-nutritive visits (NNV) for a group of pigs (Fig. 5(e)). Chen et al. 
(2020c) further extracted spatial–temporal features by using the CNN 
architecture Xception and LSTM to recognise feeding behaviour of pigs 
on group level. To convert the recognition results from group level to 
individual level, an image processing algorithm based on maximum 
entropy segmentation, HSV (Hue, Saturation and Value) colour space 
transformation and template matching was proposed to calculate the 
circularity of the head, the ratio of the head to the feeding sub-region, 
the accumulated pixels of the head motion, and the distance from the 
head to the number on pig back in order to determine the identity and 
feeding time of each pig (Fig. 5(f)). From the above studies, it can be 
found that either single-pig or multi-pig feeding recognition has devel-
oped form computer vision to deep learning. 

Furthermore, studies of feeding recognition for cattle have also 
developed from computer vision to deep learning. Porto et al. (2015) 
recognised cow feeding and standing behaviour by defining a method-
ology based on the Violae-Jones algorithm and using a multi-camera 

Fig. 5. Feeding behaviour recognition based on computer vision and deep learning.  
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video recording system to obtain panoramic top-view images of an area 
of the barn (Fig. 5(g)). On the basis of these research outcomes, the 
proposed system is suitable for computing cow behavioural indices and 
the real-time detection of behavioural changes. Achour et al. (2020) 
used the top of the dairy cow’s head image as a Region of Interest (ROI) 
and used different classifiers based on Convolutional Neural Network 
(CNN) model to recognise the feeding behaviour and perform individual 
identification of seventeen Holstein dairy cows (Fig. 5(h)). Bezen et al. 
(2020) designed a computer vision system for cow individual feed intake 
measurement based on deep Convolutional Neural Networks (CNNs) 
models and a low-cost RGB-D (Red, Green, Blue, Depth) camera (Fig. 5 
(i)). Feed intake was estimated by combining information from the RGB 
and depth images. Cow identification was conducted using the RGB 
image. Deep learning algorithms for identification and intake estimation 
were developed using CNN models. The training analysis shows that the 
model based on RGB-D data shows better results than the model based 
on depth channel data without RGB. 

4.4. Lameness recognition 

Initially, Song et al. (2008) extracted the trackway defined as “hind 

hoof compared to fore hoof position” using computer vision technology 
after background subtraction, binary image operations, calibration and 
hoof separation, and then scored cow’s locomotion in order to estimate 
the lameness in the herd (Fig. 6(a)). Poursaberi et al. (2010) proposed a 
hierarchy background/foreground exaggeration to segment the cow in 
each frame and track it in video. The combination of logarithm and 
exponential, background subtraction as well as statistical filtering were 
used to find the accurate shape of the cow. Furthermore, the back 
posture of each cow during standing and walking was extracted auto-
matically. It was done by detecting the arc of back posture and fitting a 
circle through selected points on the spine line. The average inverse 
radius of four frames displaying the hind hoofs in contact with the 
ground (two frames for each hoof in a row) was assigned to the cow. 
Based on this curvature value, a score representing the status of lame-
ness in the individual cow was given automatically (Fig. 6(b)). The 
above studies apply thresholds to the whole population to detect 
whether or not an individual cow is lame. Viazzi et al. (2013) further 
developed an individualized version of the body movement pattern 
score, which uses back posture to classify lameness into 3 classes, and to 
compare both the population and the individual approach under farm 
conditions (Fig. 6(c)). In the above studies, two-dimensional cameras 

Fig. 6. Lameness recognition based on computer vision and deep learning.  
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positioned in side view are used to measure back posture. This method, 
however, is not always applicable in farm conditions since it can be 
difficult to be installed. Shadows and continuous changes in the back-
ground also render image segmentation difficult and often erroneous. In 
order to overcome these problems, Viazzi et al. (2014b) proposed a new 
computer vision method to extract the back posture from walking cows 
by using a three dimensional camera from top view perspective (Fig. 6 
(d)). The results show that the application of a three-dimensional cam-
era leads to an accuracy comparable to the side view approach and that 
the top view approach can overcome limitations in terms of automation 
and processing time. Hertem et al. (2014) optimised the classification 
output of a computer vision-based algorithm for automated lameness 
scoring. A live on-the-spot assessed 5-point locomotion score using a 3D- 
camera was the reference for the automatic lameness score evaluation. 
The use of cow individual consecutive measurements improved the 
correct classification rate of an automatic lameness detection system. 
Zhao et al. (2018) analysed leg swing using computer vision techniques 
and developed an automatic and continuous system for scoring the 
locomotion of cows to detect and predict lameness with high accuracy 
and practicability (Fig. 6(e)). The motion curve was plotted by 
extracting the position of the moving leg by image processing, and the 
motion curve was analysed to generate six features referring to the gait 
asymmetry, speed, tracking up, stance time, stride length, and tender-
ness. A box-plot of the features within 3 classes showed that the dataset 
was nearly linear and separable under the six features and that the cows 
had different lameness indicators in different lameness stages. 

With the development of deep learning technology, lameness 
recognition for cattle has developed from computer vision to deep 
learning. Wu et al. (2020) proposed a method based on YOLOv3 deep 

learning algorithm and relative step size characteristic vector to classify 
lame and non-lame cows (Fig. 6(f)). Videos were decomposed into 
sequence frames, and leg targets of cows in each frame were detected by 
YOLOv3 algorithm. Relative step sizes of cow’s front and rear legs were 
calculated based on leg coordinates, and the relative step size charac-
teristic vector was constructed. Finally, a trained Long Short-Term 
Memory (LSTM) classification model was used to classify lame and 
non-lame cows based on the characteristic vector. A total of 210 videos 
were selected for verification using LSTM, support vector machine 
(SVM), K-Nearest Neighbour (KNN) and decision tree classifier (DTC) 
algorithms. Results showed that accuracy of lameness detection based 
on LSTM was 98.57%, which was 2.93%, 3.88%, and 9.25% higher than 
SVM, KNN, and DTC, respectively. As typical dairy cow lameness actions 
are only several seconds in duration and exhibit characteristic spatio-
temporal structures, Jiang et al. (2020) attempted to capture this 
structure and learned action representations with convolutional neural 
networks (Fig. 6(g)). However, such representations are typically 
learned at the level of a few video frames, thereby failing to model ac-
tions over their full temporal extent. In this study, they learned video 
representations using neural networks with single-stream long-term 
optical flow convolution. The experimental results demonstrate that 
single-stream long-term optical flow convolution network models with 
increased temporal extents improve the accuracy of dairy cow lameness 
action recognition. 

4.5. Mounting behaviour recognition 

Initially, Nasirahmadi et al. (2016) developed a method for auto-
matic detection of mounting events amongst pigs under commercial 

Fig. 7. Mounting behaviour recognition based on computer vision and deep learning.  
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farm conditions by means of image processing (Fig. 7(a)). An ellipse 
fitting technique was applied to localise pigs in the image. The inter-
section points between the major and minor axis of each fitted ellipse 
and the ellipse shape were used for defining the head, tail and sides of 
each pig. The Euclidean distances between head and tail, head and sides, 
the major and minor axis length of the fitted ellipse during the mounting 
were used for development of an algorithm to automatically recognise a 
mounting event. Guo et al. (2019) proposed a method for detecting 
mounting behavior in dairy cattle using the geometric and optical flow 
characteristics of identified image regions in videos taken on dairy farms 
(Fig. 7(b)). Firstly, masking technology was used to remove the unre-
lated background, convert the RGB color space to HSV color space, and 
adjust the summation coefficients of the HSV channels to improve the 
contrast between the cows and background images. Subsequently, the 
proposed Background Subtraction with Color and Texture Features 
(BSCTF) algorithm was used to detect cow regions. Then, to perform 
inter-frame differential processing on detection regions, the geometric 
and optical flow characteristics of the regions were extracted, and seven 
optimised features were used to construct regional feature vectors. 
Finally, a support vector machine (SVM) classifier was trained to classify 
the detected regions into mounting regions and non-mounting regions, 
which allowed the recognition of mounting behaviour. In the above 
studies, computer vision technologies were used to recognise mounting 
behaviour of pigs and cattle. 

Furthermore, the studies of mounting recognition for pigs have 
developed from computer vision to deep learning. Zhang et al. (2019b) 
proposed a Real-Time Sow Behavior Detection Algorithm based on Deep 
Learning (SBDA-DL) to recognise pigs’ mounting, drinking and urination 
(Fig. 7(c)). The algorithm uses an optimised deep learning network 
structure to directly detect the sow behavior. This improves the accuracy 
of behavior detection at a processing speed required for real-time 
detection and meets the requirements of daily monitoring from auxil-
iary staff in most pig breeding farms. Li et al. (2019b) developed an 
efficient learning algorithm to recognise mounting behaviour of pigs 
based on the data characteristics of visible light images (Fig. 7(d)). Pig 
segmentation network based on Mask Region-Convolutional Neural 
Networks (Mask R-CNN) was applied to extract individual pigs in the 
frames. The region of interest (RoI) parameters and mask coordinates of 
each pig, from which eigenvectors were extracted, could be obtained. 
Subsequently, the eigenvectors were classified with a kernel extreme 
learning machine (KELM) to determine whether mounting behaviour 
has occurred. This method can be an efficient way of solving the problem 
of segmentation difficulty caused by partial occlusion and adhesion of 
pig bodies, even if the pig body colour was similar to the background, in 
recognition of mounting behaviour. 

4.6. Behaviour posture recognition 

For recognition of behaviour posture in pigs, Nasirahmadi et al. 
(2015) investigated the feasibility of using image processing and the 
Delaunay triangulation method to detect change in group lying behav-
iour of pigs under commercial farm conditions and relate this to 
changing environmental temperature (Fig. 8(a)). Nasirahmadi et al. 
(2019a) investigated whether a two-dimensional imaging system could 
be used for lateral and sternal lying posture detection in pigs under 
commercial farm conditions (Fig. 8(b)). Pigs were extracted from their 
background using a background subtracting method. Based on the bi-
nary image properties, the boundaries and convex hull of each animal 
were found. In order to determine their lying posture, the area and 
perimeter of each boundary and convex hull were calculated in lateral 
and sternal lying postures as inputs for training of a linear SVM classi-
fier. The trained SVM was then used to detect the target postures in 
binary images. In above studies, computer vision technologies were used 
for recognition of pig postures. 

Recognition of pig postures has developed from computer vision to 
deep learning. Zheng et al. (2018) introduced a detector, Faster R-CNN, 

on deep learning framework to identify five postures (standing, sitting, 
sterna recumbency, ventral recumbency and lateral recumbency) and 
obtain sows accurate location in loose pens (Fig. 8(c)). The detection 
system consists of a Kinect v2 sensor that acquires depth images and a 
program that identifies sow postures and locates its bounding-boxes. 
Nasirahmadi et al. (2019b) determined whether a two-dimensional 
imaging system, along with deep learning approaches, could be uti-
lised to detect the standing and lying (belly and side) postures of pigs 
under commercial farm conditions (Fig. 8(d)). Three deep learning- 
based detector methods, including faster regions with convolutional 
neural network features (Faster R-CNN), single shot multibox detector 
(SSD) and region-based fully convolutional network (R-FCN), combined 
with Inception V2, Residual Network (ResNet) and Inception ResNet V2 
feature extractions of RGB images were proposed. Riekert et al. (2020) 
designed a deep learning system for position and posture detection that 
only requires standard 2D camera imaging with no adaptations to the 
application setting (Fig. 8(e)). This deep learning system applies the 
state-of-the-art Faster R-CNN object detection pipeline and the state-of- 
the-art Neural Architecture Search (NAS) base network for feature 
extraction. Zhu et al. (2020) proposed an end-to-end refined two-stream 
RGB-D Faster region convolutional neural network (R-CNN) algorithm, 
which fuses RGB-D image features in the feature extraction stage for 
recognising five postures of lactating sows (standing, sitting, sternal 
recumbency, ventral recumbency, and lateral recumbency) in scenes at a 
pig farm (Fig. 8(f)). Based on the Faster R-CNN algorithm, two CNNs 
were first used to extract the RGB image features and depth image fea-
tures. Then, a proposed single RGB-D region proposal network was used 
to generate the regions of interest (ROIs) for the two types of image 
feature maps in RGB-D. Next, the features of the RGB-D ROIs were 
extracted and merged using a feature fusion layer. Finally, the fused 
features of the RGB-D ROIs were input into a Fast R-CNN to obtain the 
recognition results. In order to detect frame-level sow postures, 
temporally localise posture change actions, and generate spatio- 
temporally action tubes parsed from a long-time untrimmed segment 
of depth video, Zheng et al. (2020) recorded depth videos for five 
batches of lactating sows, using a Kinect from a top-view in a com-
mercial farm. Three batches were used for training and validation, and 
the other two for testing. Four postures (standing, sitting, ventral lying, 
and lateral lying) were automatically detected (Fig. 8(g)). The meth-
odology can be applied in large-scale deployments for learning livestock 
action preferences and behavioural traits, thereby enhancing welfare 
and productivity on a farm. 

For recognition of behaviour posture in cattle, Porto et al. (2013) 
proposed a computer vision-based system for the automatic detection of 
dairy cow lying behaviour in free-stall barns (Fig. 8(h)). The system was 
composed of a multi-camera video-recording system and a software 
component which executed a cow lying behaviour detector model using 
the Violae-Jones algorithm. The experimental results suggest that the 
system proposed in this study could be used for the calculation of the 
cow lying index which is widely used to investigate cow lying behaviour 
in free-stall barns. Li et al. (2019c) developed three deep cascaded 
convolutional neural networks models, including the convolutional pose 
machine model, the stacked hourglass model and the convolutional 
heatmap regression model to perform robust cattle pose estimation, with 
RGB images captured under real cattle farm conditions (Fig. 8(i)). From 
the above studies, it can be found that recognition of behaviour posture 
in cattle has also developed from computer vision to deep learning. 

4.7. Tail-biting behaviour recognition 

Presently, studies of tail-biting recognition for pigs have been few. 
Liu et al. (2020b) developed a deep learning method to identify and 
locate tail-biting interactions in pigs. This method used a tracking-by- 
detection algorithm to simplify the group-level behaviour to pairwise 
interactions. Then, a convolution neural network (CNN) and a recurrent 
neural network (RNN) were combined to extract the spatial–temporal 
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Fig. 8. Behaviour posture recognition based on computer vision and deep learning.  
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features to recognise tail-biting of pigs (Fig. 9). The results demonstrate 
that the tracking-by-detection approach is capable of obtaining the 
trajectories of biters and victims. 

4.8. Nursing behaviour recognition 

Initially, Yang et al. (2018c) developed a computer vision-based 
method for automatic recognition of nursing interactions under com-
mercial farm conditions by using spatial and temporal information of 
nursing behaviour (Fig. 10(a)). For spatial information extraction, the 
spatial distribution between the mother sow and her piglets during 
nursing was used to detect the possible nursing episodes. Sows were 
segmented accurately by a fully convolutional network, and udder zones 
were calculated dynamically by the geometrical properties of the 
nursing sow and the piglet length. Spatial information from piglets was 
extracted in the self-adaptive udder zones. For temporal information 
extraction, to distinguish behaviours similar to nursing, temporal mo-
tion information about the intensity of motion and the occupation index 
was extracted from optical flow of the udder zones. The results show that 
the recognition method designed represents a significant step forward in 
automatically identifying nursing behaviour in commercial pig farms. 
Subsequently, Yang et al. (2019) developed a method to automatically 
recognise nursing behaviors of sow in videos by exploiting the spatio- 
temporal relations. The method firstly detected spatio-temporal key 
cuboids which may have nursing interactions in them, and then Ori-
ented Nursing Flows (ONuF) of the spatio-temporal key cuboids was 
proposed to further recognise nursing behaviours (Fig. 10(b)). In the 
first step, the temporal key episodes were first detected in video using 
optical flow-based features containing the distribution of nursing pixel 
and distance among moving pixels to estimate the distribution of motion 
all over the frame. Then, spatial key regions in the temporal key episodes 
were located by identifying the spatial position and geometric properties 
of the sow and her piglets using a fully convolutional network-based 
semantic segmentation approach. In the second step, to further recog-
nise nursing behavior, a new feature descriptor ONuF, estimating the 
motion orientation change and motion magnitude of spatio-temporal 
key cuboids, was proposed and used to learn a SVM classifier. The 

results indicate that the method exploiting the spatio-temporal relations 
using fully convolutional network and oriented optical flow can be used 
for automatically recognising nursing behaviours from daily behav-
ioural videos of lactating sows. 

4.9. Playing behaviour recognition 

In recent literature, there is few study of playing recognition for pigs. 
Chen et al. (2020d) developed a computer vision based approach that 
utilised a recurrent neural network-based deep learning algorithm to 
recognise pig playing behaviours and preliminarily determine the 
preference to objects. Firstly, the HSV (Hue, Saturation, Value) colour 
space-based tracking algorithm was developed to locate object region of 
interest. Secondly, the convolutional neural network (CNN) architecture 
InceptionV3 was used to extract spatial features from each frame. These 
features were input into the long short-term memory (LSTM) framework 
to extract spatial–temporal features from each episode. Through the 
fully connected layer, the prediction function Softmax was finally used 
to classify these episodes as playing or non-playing (Fig. 11). These re-
sults indicate that the proposed method can be used to recognise playing 
behaviours of pigs, and halving the radius of the region of interest can 
improve the recognition accuracy of playing behaviours. Moreover, the 
preference of pigs to objects based on playing duration can be deter-
mined. The obtained duration of playing behaviours can help farmers to 
evaluate the enrichment used and thereby to increase the health and 
welfare of the pigs in their care. 

4.10. Multi-behaviour recognition 

Initially, Lao et al. (2016) developed a computer vision-based system 
that automatically recognises sow behaviors (i.e., lying, sitting, stand-
ing, kneeling, feeding, drinking, and shifting) in farrowing crate. The 
system consisted of a low-cost 3D camera that simultaneously acquires 
digital and depth images and a software program that detects and 
identifies the sow’s behaviors (Fig. 12(a)). This study describes the 
computational algorithm for the analysis of depth images and presents 
its performance in recognising the sow’s behaviours as compared to 

Fig. 9. Tail-biting behaviour recognition based on computer vision and deep learning.  
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manual recognition. Leonard et al. (2019) monitored the behaviours of 
sows and piglets in a commercial setting utilising an autonomous ma-
chine vision system (Fig. 12(b)). The objectives of this research were to 
implement a digital and time-of-flight depth imaging system, develop a 
process with minimal user input to analyse the collected images, and 
calculate the hourly and daily posture and behaviour budgets of sows 
housed in individual farrowing stalls. This autonomous system enables 
acquisition of a large amount of replicated data to evaluate the effects of 
changing the farrowing environment on sow behavior and potentially 
well-being. The above studies indicate that computer vision is enough 
for recognition of multiple behaviours of pigs in a limited space. 

For unlimited space, deep learning has been used for recognition of 
multiple behaviours of pigs. Yang et al. (2020) developed a general and 
automatic recognition framework for recognising the daily behaviours 
of lactating sows to save manual labour and promote smart manage-
ment. The proposed framework used both image analysis techniques in 
still image and motion analysis techniques in spatiotemporal videos to 
recognise sow drinking, feeding, nursing, moving, medium active and 
inactive behaviours in a loose pen (Fig. 12(c)). The image analysis 
techniques, which are based on fully convolutional networks (FCNs) for 
high-accuracy segmentation, were used to extract spatial features that 
evaluated the spatial relationships between objects and the appearance 
of sows. The motion analysis techniques in spatiotemporal videos, which 
are based on optical flow analysis and changes in the animal centroid, 
were used to extract temporal features that evaluated the temporal 
motions of the animals. In the recognition process, these spatial and 
temporal features were input into a hierarchical classifier for behaviour 
recognition. Recognition results were obtained by a temporal- 
correlation-based correction module for promoting the recognition 
rate. The proposed method provides an effective approach for the 
automatic recognition of sow behaviours from video sequences, which 

facilitates the pig farmer in improving livestock-farming management. 
Zhang et al. (2019b) proposed a Real-Time Sow Behavior Detection 
Algorithm based on Deep Learning (SBDA-DL) by using the MobileNet 
classification network with a depth separable convolution operation. 
The algorithm was used for real-time detection of three typical sow 
behaviours, i.e., drinking, urination, and mounting (Fig. 12(d)). Zhang 
et al. (2020) took image frames and optical flow from videos as two- 
stream input objects to fully extract the temporal and spatial behav-
ioral characteristics. Two-stream convolutional network models based 
on deep learning were proposed, including inflated 3D convnet (I3D) 
and temporal segment networks (TSN) whose feature extraction 
network is Residual Network (ResNet) or the Inception architecture (e. 
g., Inception with Batch Normalization (BN-Inception), InceptionV3, 
InceptionV4, or InceptionResNetV2) to achieve recognition of pig be-
haviours, i.e., feeding, lying, walking, scratching and mounting (Fig. 12 
(e)). The experimental results indicated that The TSN model 
(ResNet101) is superior to the other models in solving the task of pig 
behavior recognition. Li et al. (2020) proposed a pig behaviour recog-
nition network with a spatiotemporal convolutional network based on 
the SlowFast network architecture for behaviour classification of five 
categories (Fig. 12(f)). Firstly, a pig behavior recognition video dataset 
(PBVD-5) was built by cutting short clips from 3-month non-stop 
shooting videos, which was composed of five categories of pig’s 
behaviour: feeding, lying, motoring, scratching and mounting. Subse-
quently, a SlowFast network based spatiotemporal convolutional 
network for the pig’s multi-behavior recognition (PMB-SCN) was pro-
posed. The results of the networks with variant architectures of the PMB- 
SCN were implemented and the optimal architecture was compared with 
the state-of-the-art single stream 3D convolutional network in the 
dataset. The results showed that this network provided remarkable 
ability of generalization and possibility for the subsequent pig detection 

Fig. 10. Nursing behaviour recognition based on computer vision and deep learning.  
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Fig. 11. Playing behaviour recognition based on computer vision and deep learning.  
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and behaviour recognition simultaneously. 
On the other hand, deep learning has also been used for recognition 

of multiple behaviours of cattle. Fuentes et al. (2020) introduced an 
approach for hierarchical cattle behavior recognition with spa-
tial–temporal information based on deep learning (Fig. 12(g)). This 

framework involved appearance features at frame-level and spatio- 
temporal information that incorporates more context-temporal fea-
tures. The system can detect (class) and localize (bounding box) regions 
containing multiple cattle behaviors in the video frames. The results 
show that the system can effectively recognise 15 different types of 

Fig. 12. Multi-behaviour recognition based on computer vision and deep learning.  
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hierarchical activities divided into individual and group activities, and 
also part actions. Yin et al. (2020) achieved the recognition of cows’ 
lying, standing, walking, drinking and feeding behaviours (Fig. 12(h)). 
First, based on the advantage of the efficient feature extraction of Effi-
cientNet, the spatial feature extraction of cow’s video frames was real-
ized. Then, to fully extract the characteristics of different behaviour 
information of dairy cows, the BiFPN (bidirectional feature pyramid 
network) was used to realize the efficient fusion of characteristics in the 
3–5 layers of EfficientNet. Finally, the behaviour information was sent to 
the BiLSTM (bidirectional long short-term memory) module, which in-
tegrates the attention mechanism to realise the aggregation of video 
frames in a time series, thereby realising fast and accurate recognition of 
dairy cow’s motion behaviours. 

5. Research trend 

5.1. Development of robust livestock identification algorithms 

Livestock identification is a basic step of transforming group 
behaviour recognition into individual behaviour recognition. From the 
existing studies of identification of pigs and cattle, it can be seen that the 
region on animal body used for identification has moved from body part, 
e.g. pig face (Hansen et al., 2018; Marsot et al., 2020) and cattle muzzle 
(Gaber et al., 2016; Kumar et al., 2018), to the body entirety, Moreover, 
the technologies used have developed from computer vision to deep 
learning. The local region on moving animal is difficult to locate and it 
requires that animal enters the designated area cooperatively to obtain 
local images, which may involve human intervention. Therefore, future 
identification of livestock will develop in the overall direction of the 
body entirety. However, there is still a lot of space for improvement in 
the current identification algorithms based on body entirety. For 
instance, the performance of the computer vision method based on 
Gabor filters Local Binary Pattern (Huang et al., 2018) will be influenced 
due to the touching or overlapping between pigs. Furthermore, the 
performance of the deep learning method based on Faster R-CNN (Yang 
et al., 2018b) may be reduced when the number of pigs increases largely, 
especially in the nursery pens where the number of pigs is sometimes 
more than 30 in some European pig farms (Nasirahmadi et al., 2019a, 
2019b). It is because that the deep learning-based object detection al-
gorithms (e.g. the CNN architectures Faster R-CNN (Girshick, 2015), 
SSD (Liu et al., 2016) and YOLO (Redmon et al., 2016)) are mainly used 
for classification of different types of objects, while the pigs are often 
similar in the same pen. Even if in the case of CNN and LSTM archi-
tecture for identification of the cattle (Qiao et al., 2019b), the perfor-
mance of the CNN architecture will determine the final identification 
results, as CNN mainly extracts the spatial features in the image while 
LSTM only fuses these spatial features in the temporal dimension. 
Therefore, the improvement of the CNN architecture has become one of 
the main research directions of robust livestock identification. 

5.2. Recognition of livestock behaviours for different growth stages 

The present studies of behaviour recognition for livestock have 
mainly focused on the animal’s specific growth stages, e.g. lactating 
period (Yang et al., 2019), nursery period (Chen et al., 2020a), and 
fattening period (Li et al., 2020). The performance of algorithm of 
livestock behaviour recognition in one stage may be influenced when 
this algorithm is used for recognition of behaviours in another stage, as 
the size of the pig body and the stocking density are different. For 
instance, usually the number of pigs is small and the pen is loose in the 
fattening sow pens (Zhang et al., 2019b), while the number of pigs and 
the stocking density are larger in the nursery piglet pens, which will 
generate more occlusion, touching and overlapping between pigs when 
the pig is drinking (Chen et al., 2020b). Therefore, the performance of 
the drinking recognition algorithm developed in fattening pens may be 
reduced when it is used to recognise drinking of pigs in nursery pens. In 

order to address this problem, deep learning technologies, e.g., CNN and 
LSTM architectures (Donahue et al., 2015; Srivastava et al., 2015), can 
be used to extract the spatial–temporal motion pattern of the same 
behaviour in different growth stages of livestock for recognition of this 
behaviour, as deep learning has ability to train amounts of data into a 
robust model. On the other hand, the trained model could be retrained if 
there is a great difference of the motion pattern of the same behaviour 
among different growth stages. 

5.3. Further quantification of the results of behaviour recognition 

In recent years, livestock behaviour studies based on computer vision 
and deep learning has mainly focused on the recognition of a specific 
behaviour, e.g., aggression (Chen et al., 2020a), drinking (Chen et al., 
2020b), feeding (Chen et al., 2020c), lameness (Jiang et al., 2020), 
mounting (Li et al., 2019b), posture (Zheng et al., 2020), tail-biting (Liu 
et al., 2020b), nursing (Yang et al., 2020) and playing (Chen et al., 
2020d), or classification of multiple behaviours, e.g. feeding, lying, 
walking, scratching and mounting (Zhang et al., 2020); Li et al., 2020). 
However, the recognition or classification results of these livestock be-
haviours need to be further quantified. For instance, the present studies 
have mainly focused on the recognition of pig feeding and the quanti-
fication of feeding time of each pig (Yang et al., 2020; Chen et al., 
2020c). While feed intake, meal length, meal interval, number of eaten 
meals per day, and total time spent eating (Marcon et al., 2015; Adrion 
et al., 2018; Cross et al., 2018) are also necessary to be quantified, as 
changes in the quantity of feed eaten by pigs can indicate environ-
mental, health or social stressors (Matthews et al., 2016) and can also be 
used to predict outbreaks of diseases such as pneumonia (Brown-Brandl 
et al., 2016). Therefore, further quantification of the results of behaviour 
recognition has become one of the important research directions of 
livestock behaviour recognition in the future. 

5.4. Building evaluation system of growth status, health and welfare 

Presently, the existing studies of livestock behaviours has mainly 
involved with recognition of feeding, drinking, aggression, lameness, 
mounting, tail-biting, posture, nursing and playing. Among them, 
feeding and drinking can directly reflect the growth status of livestock 
animals (Botreau et al., 2007). Aggression, lameness, mounting, tail- 
biting can cause animals’ skin trauma, infection and even fatal in-
juries, which are closely related to the animal health (Turner et al., 
2006; Bruijnis et al., 2012; Teixeira and Boyle, 2014; Larsen et al., 
2019). Pose estimation is also a key step evaluating animal health 
(Yazdanbakhsh et al., 2017). Furthermore, nursing and playing mainly 
reflect animal welfare (Muns et al., 2013; Lahrmann et al., 2018). 
However, the existing studies of recognition of the above livestock be-
haviours have mainly realised the recognition of the specific behaviours. 
For the aspects of the evaluation of growth status, health and welfare, 
there are few parameters that can build a relationship between the re-
sults of behaviour recognition and the growth status, health and welfare 
of animals. For instance, the parameters of feeding/ drinking amount or 
animal weight could be quantified and related to the results of recog-
nition of feeding and drinking in order to evaluate animal growth status. 
The parameter of the degree of skin trauma could be quantified and 
related to the results of recognition of aggression, lameness, mounting 
and tail-biting in order to evaluate animal health. Furthermore, the 
parameter of the preference to different enrichment objects could be 
quantified and related to the results of recognition of playing in order to 
evaluate animal welfare. Therefore, building evaluation system of 
growth status, health and welfare has been the main research direction 
used for establishing the relationship between the results of livestock 
behaviour recognition and relevant evaluation parameters, which will 
greatly help farmers to evaluate the growth status, health and welfare of 
animals. 
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6. Conclusion 

In recent years, many studies of recognition of livestock behaviours 
based on computer vision and deep learning have appeared. As pigs and 
cattle are typical commercial livestock and their aggression, drinking, 
feeding, lameness, mounting, posture, tail-biting, nursing, playing and 
other behaviours are closely related to the growth status, health and 
welfare, this paper mainly evaluates the methods for recognition of 
these behaviours of pigs and cattle. Since image segmentation and 
identification are the basis of livestock behaviour recognition, this paper 
analyses the development process of image segmentation, identification 
and behaviour recognition from computer vision to deep learning, 
which provides researchers and producers with technical references. In 
addition, this paper further elaborates the research trend of livestock 
behaviour recognition from four aspects, i.e., development of robust 
livestock identification algorithms, recognition of livestock behaviours 
for different growth stages, further quantification of the results of 
behaviour recognition, and building evaluation system of growth status, 
health and welfare. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was a part of the project funded by the “National Natural 
Science Foundation of China”, China (grant number: 31872399). Tomas 
Norton would like to acknowledge the support from Pig Improvement 
Company (PIC) for his contribution to this work. 

References 

Allen, A., Golden, B., Taylor, M., Patterson, D., Henriksen, D., Skuce, R., 2008. 
Evaluation of retinal imaging technology for the biometric identification of bovine 
animals in Northern Ireland. Livestock Sci. 116 (1-3), 42–52. 

Adrion, F., Kapun, A., Eckert, F., Holland, E.M., Staiger, M., Götz, S., Gallmann, E., 2018. 
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